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Abstract The efficient design of solar photovoltaic (PV) modules relies on accurately
estimating the internal parameters of their equivalent circuit models. This task involves
solving highly nonlinear and multimodal optimization problems. To address this chal-
lenge, this paper proposes a hybrid metaheuristic approach (ASOSSA) that integrates
Atom Search Optimization (ASO) with Salp Swarm Algorithm (SSA) to improve pa-
rameter estimation for single and double diode PV models. By combining ASO’s global
search capabilities with SSA’s dynamic position updates, the proposed method enhances
convergence and avoids local optima. Simulation results, benchmarked against various
state-of-the-art algorithms, demonstrate ASOSSA’s effectiveness and robustness in pro-
ducing precise parameter estimates, even under noisy measurement conditions.
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1 Introduction

The rising global energy demand, coupled with the depletion of fossil fuel resources, has
intensified the pursuit of clean and sustainable alternatives. Among these, photovoltaic
(PV) energy has gained significant attention due to its global availability, emission-free
nature, and ease of deployment [1]. PV systems convert solar radiation into electrical
power using solar cells (SCs), but their performance is strongly influenced by external
environmental factors such as irradiance and temperature. Furthermore, the high cost
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of installation and frequent maintenance, primarily due to technological immaturity and
environmental degradation, remains a major barrier to large-scale adoption [2].

Optimizing PV module performance requires accurate modeling of the electrical be-
havior of solar cells. This is typically achieved through equivalent circuit models, most
commonly the Single Diode (SD) and Double Diode (DD) models [3]. These models rely
on parameter estimation to simulate the nonlinear current-voltage (I–V) relationship,
involving variables such as photo-generated current, diode saturation current, ideality
factor, and parasitic resistances. The precision of this parameter identification is crucial
to the effectiveness of PV system design and simulation [4].

Mathematically, estimating these parameters can be formulated as an optimization
problem, where the objective is to minimize the Root Mean Square Error (RMSE) be-
tween measured and simulated current values [5]. However, this optimization landscape
is complex—highly nonlinear and multimodal—often leading traditional deterministic
methods such as Newton-Raphson, Lambert W-based models, and iterative curve fitting
to converge prematurely or become trapped in local optima [6–9].

Metaheuristic algorithms provide a robust alternative by enabling global search over
rugged landscapes. Approaches like Particle Swarm Optimization (PSO) [10], Harmony
Search (HS) [11], Genetic Algorithms (GA) [12], firefly algorithm [13], and artificial gorilla
troops optimizer [14] have all demonstrated promising results in PV parameter estima-
tion. Nevertheless, according to the No-Free-Lunch theorem [15], no single optimization
technique can universally solve all classes of problems optimally.

To address this, we introduce a hybrid metaheuristic called ASOSSA, which com-
bines Atom Search Optimization (ASO) [16] with the Salp Swarm Algorithm (SSA) [17].
ASO contributes strong global exploration capabilities, while SSA enhances convergence
through swarm-based position updates. The integration aims to balance exploration and
exploitation, improving solution accuracy and avoiding local stagnation.

We validate the ASOSSA method on benchmark datasets using both SD and DD mod-
els. Experimental results show that ASOSSA outperforms several existing techniques in
terms of accuracy, robustness, and resistance to noisy data, making it a strong candidate
for real-world PV modeling and parameter estimation tasks.

The rest of this paper is organized as follows: Section 2 introduces the fundamental
concepts of photovoltaic modeling and optimization, including the SD and DD models,
ASO, and SSA. Section 3 presents the proposed ASOSSA algorithm and details its in-
tegration mechanism. Section 4 discusses the experimental setup, benchmark datasets,
and performance metrics, followed by a comprehensive analysis of the results. Finally,
Section 5 concludes the study.

2 Background

2.1 Photovoltaic Models

Accurate modeling of photovoltaic (PV) cells is fundamental in optimizing their design
and performance. A mathematical representation of the internal parameters of solar cells
(SCs) is essential to this task. Among the most widely accepted models are those based
on equivalent electronic circuits, notably the Single Diode (SD) and Double Diode (DD)
models [18–22]. These models serve not only for electrical characterization but also enable
the formulation of parameter identification as an optimization problem. In the following
subsections, we detail both models, highlighting their structure, governing equations, and
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relevance to optimization-based parameter estimation.

2.1.1 Single Diode Model

The SD model represents one of the simplest yet most commonly used configurations
for PV cell modeling. It consists of a current source representing the photo-generated
current, a single diode modeling the p-n junction, and two resistive elements: a series
resistor Rs and a shunt resistor Rsh, to account for internal losses. The diode incorporates
a non-ideal behavior parameterized by an ideality factor n.

The output current I of the SD model is expressed as:

I = Iph − Id − Ish (1)

where Iph is the photo-generated current, Id is the diode current, and Ish is the current
through the shunt resistor. Using the Shockley diode equation, the diode current Id is
given by:

I = Iph − Is

[
exp

(
q(V + IRs)

nkT

)
− 1

]
− V + IRs

Rsh

(2)

In this expression, Is denotes the diode saturation current, V is the terminal voltage,
q is the electron charge, k is Boltzmann’s constant, and T is the absolute temperature of
the cell in Kelvin. The five parameters to be estimated in this model—Iph, Is, n, Rs, and
Rsh—significantly influence the model’s accuracy and the overall performance prediction
of the PV system.

2.1.2 Double Diode Model

The DD model extends the SD model by incorporating an additional diode. This second
diode is introduced to account for recombination effects and other non-ideal behaviors
not captured by the SD model. Like the SD model, it includes a photo-generated current
source, two series diodes, and resistive losses through Rs and Rsh.

The output current for the DD model is defined as:

I = Iph − Id1 − Id2 − Ish (3)

where Id1 and Id2 represent the currents through the first and second diodes, respec-
tively. These components are modeled using modified Shockley equations:

I = Iph − Is1

[
exp

(
q(V + IRs)

n1kT

)
− 1

]
− Is2

[
exp

(
q(V + IRs)

n2kT

)
− 1

]
− V + IRs

Rsh

(4)

In this context, Is1 and Is2 denote the saturation currents of the two diodes, while n1

and n2 are their corresponding ideality factors. The remaining parameters are defined as
in the SD model. The DD model requires the estimation of seven parameters: Iph, Is1,
Is2, n1, n2, Rs, and Rsh—making it more comprehensive and accurate for high-fidelity
modeling of real solar cells.

The parameter bounds outlined in Table 1 are chosen based on existing literature
[13,38–41], with slight tolerances to maintain a feasible search space while ensuring phys-
ical relevance. This is essential for accurate optimization results that reflect real-world
solar cell behavior. For instance, Laudani et al. [23] analyzed valid physical ranges for
each parameter, providing further insight into appropriate boundary selections.
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Table 1: Parameter bounds for the SD and DD photovoltaic models
Parameter Lower Bound Upper Bound
Iph (A) 0 1

Isd / Isd1 / Isd2 (A) 0 0.5
n, n1, n2 1 2
Rs (Ω) 0 0.5
Rsh (Ω) 0 100

2.2 Solar Cell Parameter Estimation as an Optimization Task

The SD and DD photovoltaic models rely on several internal parameters that must be
accurately estimated to ensure precise performance simulation. This estimation process
can be framed as an optimization problem, where the objective is to minimize the error
between the modeled and actual output current of a real solar cell.

For both models, an error-based objective function can be derived from Equations
(2) and (4), evaluating how closely the simulated current aligns with measured data.
Let Im and Vm represent the measured current and voltage values from experimental or
manufacturer-provided datasets. For a candidate solution x (i.e., the parameter vector),
the error is quantified by comparing the simulated current Isim(x, Vm) against the real
measurements Im.

To capture this deviation, we define the objective function using the Root Mean
Square Error (RMSE):

RMSE(x) =

√√√√ 1

N

N∑
i=1

(
I
(i)
m − Isim(x, V

(i)
m )

)2

(5)

Here, N is the number of data points in the dataset. The optimization algorithm
aims to minimize the RMSE by iteratively refining the parameter vector x, seeking the
best match between the modeled and actual current outputs.

In practice, the input dataset may be affected by noise or measurement inaccura-
cies, which introduce multi-modality and ruggedness to the objective function landscape.
These characteristics pose challenges for traditional optimization techniques, making ro-
bust metaheuristic methods particularly suitable for this parameter identification prob-
lem [23,24].

2.3 Atom Search Optimization

Atom Search Optimization (ASO) is a physics-inspired metaheuristic algorithm intro-
duced by [16], which simulates the motion and interaction of atoms based on molecular
dynamics. In ASO, each atom represents a potential solution within the search space,
and its quality is evaluated using a fitness function. Atoms with better fitness (heavier
mass) exert stronger attraction on others, guiding the population toward optimal regions.
Conversely, lighter atoms exhibit higher acceleration, which promotes exploration of new
areas and prevents premature convergence.

The algorithm begins by initializing a population of N atoms, each with a position
Xi in a DX-dimensional search space. The fitness of each atom, Fiti, is calculated and
compared to the current global best fitness Fitb. If Fiti < Fitb, the corresponding atom
is selected as the new global best solution Xb.
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The mass mi of each atom is computed using the following normalized exponential
function:

mi(t) =
Mi(t)∑N
j=1Mj(t)

, Mi(t) = exp

(
− Fiti(t)− Fitb(t)

Fitw(t)− Fitb(t)

)
(6)

where Fitw(t) is the worst fitness in the current population and t is the current
iteration.

The number of neighbors KN considered for each atom decreases over time to shift
the focus from exploration to exploitation:

KN(t) = N − (N − 2)

√
t

tmax

(7)

To compute the interaction force Fi and constraint force Gi, the following expressions
are used:

F d
i (t) =

∑
j∈Kbest

ηjF
d
ij(t) (8)

Gd
i (t) = λ(t)(Xd

b (t)−Xd
i (t)), λ(t) = β exp

(
−20

t

tmax

)
(9)

Here, Kbest is a subset of the best-performing atoms, ηj is a uniformly distributed
random number in [0, 1], and β is a control parameter for constraint force scaling.

The net acceleration for atom i is calculated using:

accdi (t) =
F d
i (t)

mi(t)
+

Gd
i (t)

mi(t)

= −α

(
1− t− 1

tmax

)3

exp

(
−20

t

tmax

)
×

∑
j∈Kbest

ri [2(hij(t))
13 − (hij(t))

7]

mi(t)

(Xd
j (t)−Xd

i (t))

∥Xi(t)−Xj(t)∥2

+
β exp

(
−20 t

tmax

)
(Xd

b (t)−Xd
i (t))

mi(t)

(10)

where ri is a random value and hij(t) denotes the distance between atoms i and j.

The position and velocity of each atom are updated as follows:

vdi (t+ 1) = γvdi (t) + accdi (t) (11)

Xd
i (t+ 1) = Xd

i (t) + vdi (t+ 1) (12)

The complete ASO procedure is summarized in Algorithm 1.
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Algorithm 1 Atom Search Optimization (ASO)
1: Initialize a population X of N atoms in DX dimensions
2: Set initial velocities and evaluate fitness values
3: repeat
4: for each atom Xi ∈ X do
5: Evaluate fitness Fiti
6: Update best fitness Fitb and corresponding solution Xb if improved
7: Compute atom mass mi using Eq. (6)
8: Identify KN neighbors using Eq. (7)
9: Compute interaction force Fi using Eq. (8)
10: Compute constraint force Gi using Eq. (9)
11: Calculate acceleration acci using Eq. (10)
12: Update velocity vi using Eq. (11)
13: Update position Xi using Eq. (12)
14: end for
15: until convergence or t ≥ tmax

16: Return best solution Xb

2.3.1 Salp Swarm Algorithm (SSA)

SSA is an optimization technique proposed by [17] to solve different types of optimization
problems. It emulates the salps’ behavior in nature. Salps are a type of the Salpidae’s
family. Their moving behavior and weights have a high-water percentage. They use a
contracting mechanism to move, pumping water through their bodies to change position.
In the ocean, salps form salp chains, which improve foraging and enable efficient move-
ment through coordinated changes in their arrangement [25].
The SSA algorithm begins by generating a random population then dividing this popu-
lation into two groups (i.e. the leader and followers) based on their position in the chain,
the front ones are called the leader, and the other ones are the followers. The position
of the salps’ is determined in n-dimensions that represent the problem’s search domain
and n denotes the problem’s variables. The food source of the salps is considered as the
target of the swarm. The position of the salps should be updated frequently, therefore,
the salp leader using the following equation to do this update:

x1
j =

{
Fj + c1((ubj − lbj)× c2 + lbj) c3 ≤ 0

Fj − c1((ubj − lbj)× c2 + lbj) c3 > 0
(13)

where x1
j represents the position of the leader in j-th dimension. Fj is the food source in

this dimension. The upper and lower bounds are represented by ubj and lbj, respectively.
c2 and c3 are random variable in [0, 1] to maintain the search domain. The parameter c1
balances the exploration and exploitation phases. It is computed as follows:

c1 = 2e−( 4t
tmax

)2 , (14)

where t and tmax represent the current iteration and the total iterations’ number, respec-
tively. The followers’ position is also updated by the following equation:

xi
j =

1

2
(xi

j + xi−1
j ) (15)

where, xi
j denotes the i-th follower position in j-th dimension and i > 1.

Algorithm 2 show the entire steps of the SSA algorithm.
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Algorithm 2 Salp Swarm Algorithm (SSA)

1: Generate a random population X.
2: repeat
3: Calculate the objective function for solutions.
4: Update the best salps (F = Xb).
5: Update c1 by Eq. (14).
6: for i = 1 : N do
7: if i == 1 then
8: Update the salps’ position by Eq. (13)
9: else
10: Update the salps’ position by Eq. (15)
11: end if
12: end for
13: until (t < tmax)
14: Save the best solution F .

3 Proposed Method

This section introduces the proposed hybrid optimization algorithm, ASOSSA, devel-
oped to enhance parameter estimation in photovoltaic (PV) models. ASOSSA integrates
Atom Search Optimization (ASO) with the Salp Swarm Algorithm (SSA), leveraging the
strengths of both to improve performance in highly nonlinear and multimodal search
spaces. While ASO provides efficient global exploration through mass-based attraction
mechanisms, SSA contributes local exploitation using swarm-inspired positional adjust-
ments.

The algorithm begins by initializing a random population of candidate solutions, each
representing a potential parameter set for the PV model. ASO is first applied to evaluate
fitness, update atom velocities, and reposition individuals in the search space based on
acceleration and attraction forces derived from the best-performing solutions.

To prevent stagnation in local minima, the SSA mechanism is intermittently activated.
In this phase, salp-like movements refine the position of solutions, with a leading member
moving toward the global best and subsequent members following in a linked pattern.
This swarm-based adaptation helps improve convergence and solution diversity.

ASOSSA alternates between ASO and SSA updates based on a probabilistic condi-
tion during each iteration. When ASO is active, population updates involve velocity-
driven adjustments and mass-guided movement. In SSA phases, a subset of the popula-
tion adapts using mid-point and chaotic-position strategies to fine-tune local exploration
around promising regions. Throughout the process, the algorithm retains and updates the
best global solution based on the RMSE between the model output and the experimental
dataset.

The algorithm, as illustrated in Algorithm 3, is implemented in MATLAB, based on
the original ASO [16] and SSA [17] frameworks, with enhancements for stability, boundary
control, and hybrid switching. Performance is validated on both single diode (SD) and
double diode (DD) solar cell models.
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Algorithm 3 ASOSSA Algorithm

1: Initialize atoms with random positions and velocities
2: Evaluate fitness and set global best Xb

3: for t = 1 to tmax do
4: Compute masses and accelerations
5: if rand() > 0.5 then
6: for each atom do
7: Update velocity and position
8: Apply bounds and re-evaluate fitness
9: end for
10: else
11: Update leader using adaptive coefficient c1
12: for each follower do
13: Update position using midpoint rule
14: end for
15: Evaluate fitness and update Xb if improved
16: end if
17: end for
18: Return best solution Xb

4 Results and Discussion

This section presents the performance evaluation of the proposed ASOSSA algorithm
for estimating the parameters of single-diode (SD) and double-diode (DD) photovoltaic
models. The evaluation dataset is derived from a commercial monocrystalline silicon solar
cell manufactured by R.T.C. Company (Paris, France), with a 57 mm diameter tested
under standard conditions (1 Sun, 1000 W/m2, and T = 33◦C). The dataset comprises
23 widely cited I–V measurement records.

The experiments were implemented in MATLAB 2016b on a Windows 8 machine with
an Intel Core i5 processor and 4 GB RAM. The ASOSSA algorithm was executed with
a population size of 300 and a maximum of 3000 iterations. It is benchmarked against a
wide set of algorithms: SSA, ASO, PSO, GA, ILCOA [26], LCOA [26], DE [27], Newton,
HS [11], SCA [28], GGHS [29], BSA [30], and simulated annealing (SA) [31].

4.1 Performance Measures

The Root Mean Square Error (RMSE) is used as the main metric to evaluate the quality
of parameter estimation:

RMSE =

√√√√ 1

N

N∑
i=1

(I
(i)
tm − I

(i)
te )

2 (16)

where Itm is the measured current, Ite is the estimated current from the model, and
N = 37 is the number of data points in the extended dataset.



Author, et al. Artificial Intelligence Topics and Applications 1(1), 2025, 59–72 67 of 72

4.2 Single Diode (SD) Model Results

Table 2 presents the predicted parameters and RMSE values obtained using ASOSSA and
other comparative algorithms. ASOSSA achieved the lowest RMSE value of 9.860×10−4,
indicating its high accuracy. The estimated values for key parameters such as Iph, n, Rs,
and Rsh were consistent across the top-performing algorithms (ASOSSA, SSA, ASO),
although ASOSSA produced a more precise estimate for Isd.

Methods such as GGHS and ILCOA yielded competitive RMSE values; however,
ILCOA introduced inconsistencies in Isd that could affect the long-term reliability of the
model. In contrast, Newton-based and other classical techniques resulted in significantly
higher RMSEs (e.g., 9.7× 10−3 for Newton, and 4.102× 10−3 for GA), highlighting their
limited effectiveness in nonlinear, multimodal optimization problems.

Algorithms such as PSO and SA showed RMSEs exceeding 10−2 and exhibited sub-
stantial deviations in parameters like Rsh and n, suggesting a tendency toward premature
convergence or instability. These results emphasized the robustness of ASOSSA, which
not only minimized estimation errors but also maintained physical plausibility across all
parameters. Figure 1 shows the convergence of ASOSSA on SD model compared to ASO
and SSA methods.

Table 2: Predicted values of SD circuit model and the corresponding RMSE for the
proposed method and the compared algorithms

Parameter ASOSSA SSA ASO GGHS ILCOA LCOA DE
Iph (A) 0.7608 0.7606 0.7607 0.7609 0.7608 0.7608 0.7608
Isd (A) 3.2E-07 2.9E-07 3.1E-07 3.3E-07 3.2E-01 3.2E-01 3.230E-7
n 1.4810 1.4705 1.4780 1.4820 1.4811 1.4812 1.4806
Rs (Ω) 0.0364 0.0368 0.0365 0.0363 0.0364 0.0364 0.0364
Rsh (Ω) 53.700 54.145 53.955 53.060 53.719 53.902 53.710
RMSE 9.860E-04 1.029E-03 9.900E-04 9.900E-04 9.860E-04 9.861E-04 2.340E-02

Parameter Newton HS PSO SCA GA BSA
Iph (A) 0.7608 0.7607 0.7080 0.7670 0.7665 0.7610
Isd (A) 3.223E-07 3.049E-07 2.1EE-07 2.3EE-07 7.45EE-07 4.8EE-07
n 1.4837 1.4753 1.5100 1.5000 1.5702 1.5200
Rs (Ω) 0.0364 0.0366 0.0363 0.0370 0.0314 0.0340
Rsh (Ω) 53.763 53.590 49.500 19.300 29.483 79.590
RMSE 9.700E-03 9.90E-04 0.082 5.40E-03 4.102E-3 1.44E-03

4.3 Double Diode (DD) Circuit Model Results

For the more complex DD model, the results shown in Table 3 further supported the
effectiveness of ASOSSA. It again achieved the lowest RMSE of 9.826× 10−4, confirming
its ability to generalize to models with additional complexity. The algorithm consistently
estimated the values of Iph, n1, n2, and both diode saturation currents more accurately
than the other methods.

Although ILCOA and LCOA obtained similar RMSEs, their estimates for Isd1 and
Isd2 were notably less accurate and exceeded expected physical ranges—e.g., 0.23 and
0.75—whereas ASOSSA provided more realistic and constrained results. This highlighted
the better trade-off that ASOSSA achieved between convergence accuracy and parameter
realism.
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Figure 1: Convergence of ASOSSA on SD model

Other metaheuristic methods such as BSA and GGHS provided moderately acceptable
results but lacked consistency across all estimated parameters. PSO and SCA, despite
their popularity, failed to preserve physical validity in key values such as n2 and Rsh,
leading to higher RMSEs (e.g., 0.1985 for PSO), and thus, lower overall reliability. Figure
2 shows the convergence of ASOSSA on DD model compared to ASO and SSA methods.

Table 3: Predicted values of DD circuit model and the corresponding RMSE for the
proposed method and the compared algorithms

Parameter ASOSSA ASO SSA ILCOA[2019] LCOA[2019] SA
Iph (A) 0.76078 0.76085 0.76089 0.76078 0.76077 0.76230
Isd1 (A) 2.3E-07 2.1E-07 2.3E-07 2.3E-01 2.7E-01 4.8E-07
Isd2 (A) 6.8E-07 6.0E-07 6.0E-07 7.5E-01 3.8E-01 1.0E-08
n1 1.45214 1.44630 1.45573 1.45101 1.46205 1.51700
n2 1.98799 1.86681 1.91774 2.00000 1.99380 2.00000
Rs (Ω) 0.03673 0.03652 0.03641 0.03674 0.36670 0.03450
Rsh (Ω) 55.2881 55.8621 55.3055 55.5320 54.6314 43.1000
RMSE 9.826E-04 9.928E-04 9.981E-04 9.826E-04 9.842E-04 1.660E-02

Parameter HS GGHS PSO SCA BSA
Iph (A) 0.76170 0.76050 0.88148 0.76155 0.76700
Isd1 1.3E-07 3.7E-07 4.5E-07 3.1E-07 4.2E-07
Isd2 (A) 2.6E-07 1.4E-07 7.8E-08 5.2E-08 1.0E-12
n1 1.49400 1.49600 1.87886 1.83399 1.47000
n2 1.49900 1.92900 1.34062 1.32096 2.00000
Rs (Ω) 0.03540 0.03560 0.04729 0.04432 0.03530
Rsh (Ω) 46.8200 62.7800 58.6496 58.2099 54.4500
RMSE 1.260E-03 0.00107 1.985E-01 0.0094 1.10E-02

In general, the proposed ASOSSA algorithm showed good reliability among the tested
methods. It provided accurate results, maintained consistent performance across both
SD and DD models, and yielded parameter estimates that adhered to known physical
constraints.
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Figure 2: Convergence of ASOSSA on DD model

5 Conclusion

This study introduced ASOSSA, a hybrid metaheuristic optimization algorithm that in-
tegrates Atom Search Optimization (ASO) with the Salp Swarm Algorithm (SSA), for
accurate parameter estimation in solar photovoltaic (PV) module modeling. Experimen-
tal results demonstrated that ASOSSA achieved the lowest RMSE of 9.860×10−4 for the
single-diode (SD) model and 9.826×10−4 for the double-diode (DD) model. Compared to
the nearest competing method (SSA), ASOSSA reduced RMSE by approximately 16.4%
and 1.6% for the SD and DD models, respectively. The integration of ASO’s global
exploration with SSA’s local exploitation enabled ASOSSA to effectively navigate the
complex and multimodal search space of PV parameter estimation. The algorithm pro-
duced physically plausible and numerically stable solutions, and showed good reliability
and convergence behavior across both tested models. Future research will explore the
extension of ASOSSA to broader renewable energy optimization tasks, improve its con-
vergence rate, and incorporate adaptive control mechanisms. These enhancements aim
to support the development of intelligent, accurate, and efficient optimization tools for
sustainable energy system design.
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